# บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

งานวิจัยนี้เป็นส่วนหนึ่งของการศึกษา ผู้วิจัยได้ทำการศึกษาค้นคว้าทฤษฎีและงานวิจัยที่ เกี่ยวข้อง ดังต่อไปนี้

### 2.1 ทฤษฎีที่เกี่ยวข้อง

#### 2.1.1 สมบัติทางกายภาพ

สมบัติทางกายภาพหรือสมบัติทางฟิสิกส์เป็นสมบัติของวัสดุที่เกี่ยวกับการตอบสนองต่อ แรงกระทำทางกายภาพ

 ความหนาแน่น (Density) คือ การคำนวณหาค่าความหนาแน่นของชิ้นงานทำได้โดย การศึกษาปริมาตรของน้ำที่เข้าแทนที่ในรูพรุนเปิดด้วย ซึ่งเมื่อกล่าวถึงการทดสอบเพื่อหาปริมาตร หาก ชิ้นงานงานมีลักษณะทรงเรขาคณิตที่แน่นอน และเราสามารถทราบปริมาตรได้จากการคำนวณตามสูตร ทางเรขาคณิตทั่วไป ๆ แต่ในทางเซรามิกชิ้นงานจะมีรูปร่างรูปทรงที่ไม่แน่นอน เราจึงต้องใช้การแทนที่ น้ำโดยปริมาตรน้ำที่ถูกแทนที่เท่ากับปริมาตรชิ้นงานนั้นๆ หรือใช้การชั่งน้ำหนักในบรรยากาศปกติ เนื่องมาจากน้ำมีแรงลอยตัว หรือพยุงตัว ซึ่งน้ำหนักของชิ้นงานที่สูญหายไปเมื่อชั่งในน้ำนี้ จะเท่ากับ ปริมาตรของน้ำที่ถูกแทนที่คูณด้วยความหนาแน่นของน้ำและปริมาตรของน้ำที่ถูกแทนที่จะเท่ากับ ปริมาตรของชิ้นงานนั่นคือ น้ำหนักของชิ้นงานที่สูญหายไปในน้ำ การหาค่าความหนาแน่นของชิ้นงาน สามารถคำนวณ ดังสมการ 2.1

โดย

ρ<sub>b</sub> = ความหนาแน่นของชิ้นงาน (กรัมต่อลูกบาศก์เซนติเมตร)
W<sub>1</sub> = น้ำหนักชิ้นงานแห้ง (กรัม)
W<sub>2</sub> = น้ำหนักชิ้นงานชั่งในอากาศ (กรัม)
W<sub>3</sub> = น้ำหนักชิ้นงานชั่งในน้ำ (กรัม)
ρ<sub>w</sub> = ความหนาแน่นของน้ำที่อุณหภูมินั้นๆ(กรัมต่อลูกบาศก์เซนติเมตร)

2. คุณภาพการหล่อแบบ เป็นการขึ้นรูปด้วยวิธีการหล่อแบบพิมพ์ ใช้หลักการที่แบบพิมพ์ปูน ปลาสเตอร์มีรูพรุน ทำหน้าที่ดูดน้ำออกจากส่วนผสมของน้ำดิน จนกระทั่งมีความหนาได้ตามความต้องการ ซึ่งการปฏิบัติงานหล่อแบบพิมพ์ ประกอบด้วยแบบพิมพ์ที่ทำจากปูนปลาสเตอร์ และน้ำดินที่เป็นของไหล ประเภทสารแขวนลอยของวัตถุดิบ ได้แก่ ดินและหิน ในน้ำ รวมทั้งสารเคมีเพื่อช่วยให้น้ำดิน มีสมบัติดีขึ้น เช่นสารช่วยกระจายลอยตัว การหล่อแบบให้ได้ผลิตภัณฑ์ที่มีคุณภาพต้องพิจารณาถึงสมบัติของน้ำดิน ตั้งแต่ ความละเอียด ความหนาแน่น การไหลตัว ปริมาณสารช่วยกระจายลอยตัว และการเปลี่ยนแปลงความข้น เหลว เพราะสมบัติดังกล่าวข้างต้นมีผลต่อคุณภาพของการหล่อแบบมาก ซึ่งได้แก่ อัตราการหล่อแบบ คุณภาพของผิวผลิตภัณฑ์ เวลาสำหรับการแข็งตัว ความหนาแน่นของ เนื้อผลิตภัณฑ์ สมบัติในการตัด ตกแต่ง และน้ำที่ค้างในผลิตภัณฑ์เซรามิก เนื่องจากข้อมูลที่ได้จากการทดสอบคุณภาพของการหล่อแบบ จะ ช่วยให้สามารถวางแผนการปฏิบัติงาน รวมทั้งแก้ไขปัญหาของสมบัติของน้ำดินให้เหมาะสมกับผลิตภัณฑ์ที่ ต้องการขึ้นรูปได้

3. การหดตัว (Shrinkage) ผลิตภัณฑ์เซรามิก แบ่งเป็น 2 ระยะ คือ การหดตัวหลังจากการขึ้น รูปจนกระทั่งแห้งสนิท เนื่องจากผลิตภัณฑ์สูญเสียน้ำออกจากส่วนผสม และหลังจากแห้งสนิทจนกระทั่งเผา ผลิตภัณฑ์จะหดตัวเล็กลงอีก เนื่องจากการสูญเสียน้ำและสารประกอบอื่นในโครงสร้างทางเคมี รวมทั้งมีการ หลอมตัวของสารบางชนิด ทำให้การทดสอบหาค่าการหดตัวกระทำ 2 ช่วง คือ การหดตัวเมื่อแห้ง และการ หดตัวหลังเผา สามารถทดสอบได้ทั้งการหดตัวในเชิงเส้น และการหดตัวในเชิงปริมาตร เนื่องจากการสุญเสียก้ากรหดตัวกระทำ 2 ช่วง เรือ การหดตัวเมื่อแห้ง และการ หดตัวหลังเผา สามารถทดสอบได้ทั้งการหดตัวในเชิงเส้น และการหดตัวในเชิงปริมาตร เนื่องจากการหดตัว เมื่อแห้งเกิดจากการสูญเสียความชื้น ดังนั้นจึงต้องควบคุมให้มีอัตราการสูญเสียความชื้น หรืออัตราการแห้ง ตัวอย่างเหมาะสม และสม่ำเสมอ เพื่อให้ผลิตภัณฑ์ไม่เกิดการบิดเบี้ยว โค้งงอ การหดตัว (Shrinkage) ร้อย ละของการหดตัว สามารถบอกถึงการเชื่อมต่อของเกรนว่ามีมากน้อยเพียงใด ในสารตัวอย่าง ซึ่งสามารถหา ได้ ดังสมการ 2.2

$$S = \left(\frac{L_1 - L_2}{L_1}\right) \times 100 \%$$
 .....(2.2)

โดยที่

S = ร้อยละของการหดตัว L<sub>1</sub> = เส้นผ่านศูนย์กลางที่วัดก่อนเผา (มิลลิเมตร) L<sub>2</sub> = เส้นผ่านศูนย์กลางที่วัดหลังเผา (มิลลิเมตร)

# 2.1.2 โครงสร้างผลึก

เนื่องจากโครงสร้างผลึกมีความเป็นระเบียบเช่นเดียวกันกับแลตทิซ จึงมีสมบัติทุกอย่างที่ แลตทิซ เช่น สมบัติของสมมาตร โครงสร้างผลึกแบ่งตามรูปทรงหน่วยเซลล์ จะได้ทั้งหมด 7 ระบบ 14 แบบ ผลึกแต่ละระบบจะถูกกำหนดค่าคงที่แลตทิซของหน่วยเซลล์ คือ a b c และ α, β, γ ของโครงสร้างผลึก นั้น ดังตารางที่ 2.1

| ระบบผลึก                   | จำนวนแลตทิซ | ข้อบังคับของแกนและมุม                               |
|----------------------------|-------------|-----------------------------------------------------|
| Cubic (คิวบิก)             | 3           | a = b = c                                           |
|                            |             | $\alpha = \beta = \gamma = 90^{\circ}$              |
| Tetragonal (เตตระโกนอล)    | 2           | $a = b \neq c$                                      |
|                            |             | $\alpha = \beta = \gamma = 90^{\circ}$              |
| Orthorhombic (ออทอรอมบิก)  | 4           | $a \neq b \neq c$                                   |
|                            |             | $\alpha = \beta = \gamma = 90^{\circ}$              |
| Rhombohedral (รอมโบฮีดรัล) | 1           | a = b = c                                           |
|                            |             | $\alpha = \beta = \gamma \neq 90^{\circ}$           |
| Hexagonal (เฮกซะโกนอล)     | 1           | $a = b \neq c$                                      |
|                            |             | $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ |
| Monoclinic (โมโนคลินิก)    | 2           | $a \neq b \neq c$                                   |
|                            |             | $\alpha = \gamma = 90^{\circ} \neq \beta$           |
| Triclinic (ไตรคลินิก)      | 1           | $a \neq b \neq c$                                   |
|                            |             | $\alpha \neq \beta \neq \gamma$                     |

ตารางที่ 2.1 แสดงโครงสร้างผลึก 7 ระบบ

**ที่มา** (ดัดแปลง จิรโรจน์ ต. เทียนประเสริฐ, 2557)



**รูปที่ 2.1** เป็นระบบผลึก 7 ระบบ ที่สามารถแบ่งแยกเป็นโครงร่างสามมิติ (space lattice ) มาตรฐาน ได้เป็นจานวน 14 ชนิด **ที่มา** (สุริยา โชคสวัสดิ์ และคณะ, 2558)

 การระบุระนาบ ในการเรียกระนาบ (Plane) ต่าง ๆ ภายในผลึกนั้น จะใช้ดัชนีมิลเลอร์ (Miler Indices) เป็นตัวบอกลักษณะของระนาบ โดยเรียกเป็นค่าตัวเลขที่ได้มาจากส่วนกลับของจุดตัด (Intercept) ของระนาบนั้น กับแกนอ้างอิงของผลึก (Crystal Axes) ที่กำหนดขึ้นการหาค่าดัชนี มิลเลอร์ของระนาบ ทำได้ตามขั้นตอนดังนี้

1.1 กำหนดแกนอ้างอิงขึ้น 3 แกน โดยเลือกจุดกำเนิด (Origin) ของแกนอ้างอิงไม่ให้ระนาบที่ ต้องการหาดัชนีมิลเลอร์

1.2 หาจุดตัดของระนาบนี้บนแกนอ้างอิงทั้งสาม และค่าขนาดระยะจุดตัดที่ห่างจากจุด เป็นที่ ห่างจากจุดกำเนิด เป็นค่าตามสัดส่วนของหน่วยความยาวของแต่ละแกน สมมุติว่าค่าที่อ่านได้เป็น × y z ตามลำดับ 1.3 หาเศษส่วนกลับ (Reciprocals) ของระยะจุดตัดจะได้เป็น  $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ 

1.4 แปลงค่าเศษส่วนที่ได้จากข้อ 3 ให้เป็นเลขจำนวนเต็มค่าน้อยที่สุด โดยที่สัดส่วน (ratio) ระหว่างค่าทั้งสามยังคงเดิม สมมุติว่าได้ค่า h k l ตามลำดับ

1.5 เขียนค่าดัชนีมิลเลอร์ของระนาบนี้ด้วยสัญลักษณ์ในวงเล็บคือ (h k l)





 ระยะห่างระหว่างระนาบ คือ ค่าของระยะห่างระนาบที่อยู่ใกล้ที่สุดที่ขนานกันภายในหน่วย เซลล์ โดยในโครงสร้างผลึกที่เป็นสี่เหลี่ยมลูกบาศก์ ค่าของระยะห่างระนาบมีค่าดัชนีมิลเลอร์ที่เท่ากันจะ แทนด้วยสัญญาลักษณ์ d<sub>ikl</sub> ซึ่ง h k และ l คือค่าดัชนีมิลเลอร์ของระนาบนั้นๆ ดังรูปที่ 2.3



**รูปที่ 2.3** แสดงระยะห่างระหว่างระนาบ (110) **ที่มา** (ฟิสิกส์ราชมงคล, 2558)

จากรูปที่ 2.3 ระยะห่างระหว่างระนาบ (110) d<sub>110</sub> ของระนาบที่ 1 และ 2 ก็คือระยะ AB และระหว่าง ระนาบที่ 2 และ 3 ก็คือระยะ BC ซึ่งสามารถหาได้ จากสมการ 2.3

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}} \dots (2.3)$$

โดย d<sub>hkl</sub> = ระยะห่างระหว่างระนาบที่ใกล้ที่สุดที่ขนานกันในหน่วยเซลล์ a = ขนาดของหน่วยเซลล์ (Lattice constant) h k l = ค่าของดัชนีมิลเลอร์ของระนาบที่ขนานกัน

**ตัวอย่าง** ทองแดงมีโครงสร้างเป็น FCC และมีขนาดของหน่วยเซลล์เท่ากับ 0.361 nm ให้หาค่าระยะห่าง ระหว่างระนาบ (220) ที่ขนานกันในหน่วยเซลล์

จากสมการ 2.3

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$
$$d_{220} = \frac{0.361nm}{\sqrt{2^2 + 2^2 + 0^2}}$$
$$= 0.128nm$$

 จนาดของผลึก เป็นค่าที่ต้องอาศัยข้อมูลที่ได้จากการเลี้ยวเบนของรังสีเอ็กซ์ ทั้งมุมของการ เลี้ยวเบน θ และความกว้างที่ตำแหน่งครึ่งหนึ่งของความสูงของยอดกราฟการเลี้ยวเบน หรือเรียกอีกอย่าง ว่า Full width at half maximum (FWHM) ซึ่งสามารคำนวณขนาดของผลึก (D) ได้จากสมการของเซอร์ เรอร์ (Scherer equation) ดังสมการที่ 2.4 (นุชรีย์ ชมเชย, 2553)

$$D = \frac{K\lambda}{\beta\cos\theta} \dots (2.4)$$

โดยที่ D คือ ขนาดของผลึก (Crystallite size)

Kคือ ค่าคงที่ ขึ้นกับขนาดและรูปร่างของเม็ดผลึก ใช้ค่า k ${\approx}\,1$ 

λ คือ ความยาวคลื่นของรังสีเอ็กซ์

eta คือ Full width at half maximum (FWHM)

heta คือ มุมเลี้ยวเบน

#### 2.1.3 คุณสมบัติของแมกนีเซียม (Magnesium)

แมกนีเซียม (Magnesium) คือ ธาตุในตารางธาตุซึ่งมีสัญลักษณ์คือ (Mg) ซึ่งมีเลขอะตอม เป็น 12 แมกนีเซียมมีสถานะเป็นของแข็ง หรือ เพอริเคลส (Periclase) มีสถานะเป็นของแข็ง จุด หลอมเหลว 650 องศาเซลเซียส และมีโครงสร้างผลึกเป็นเฮกซะโกนอล Hexagonal แมกนีเซียมสามารถทำ ปฏิกิริยาอย่างช้าๆ กับน้ำเย็น และจะรวดเร็วมากขึ้นเมื่อปฏิกิริยากับน้ำร้อน แมกนีเซียมมีสถานะเป็นโลหะ คุณสมบัติที่เด่นชัดที่สุดของแมกนีเซียมคือความเป็นโลหะที่มีน้ำหนักเบา นำไปขึ้นรูปได้โดยการรีด การดึง การตี ได้ง่าย สารประกอบแมกนีเซียมมักจะถูกนำมาใช้เป็นวัสดุทนความร้อนในเตาเผาวัสดุ และใช้บุผิวใน การผลิตโลหะ อาทิเช่น เหล็ก เหล็กกล้า โลหะ แก้วและปูนซีเมนต์ เป็นต้น

| <u>สัญลักษณ์</u>             | Mg                   |
|------------------------------|----------------------|
| <u>การจัดเรียงอิเล็กตรอน</u> | [Ne] 3s <sup>2</sup> |
| มวลอะตอม                     | 24.305 amu           |
| <u>เลขอะตอม</u>              | 12                   |
| <u>จุดหลอมเหลว</u>           | 650 °C               |
| จุดเดือด                     | 1120 °C              |
| โครงสร้าง                    | НСР                  |

ตารางที่ 2.2 ตารางคุณสมบัติของแมกนีเซียม

้**ที่มา** (ดัดแปลง กัลยารัตน์สระทอง และรุ่งระวี พุดสีเสน 2558)

### 2.1.4 คุณสมบัติของแมงกานีส (Manganese)

แมงกานีส (Manganese) คือ ธาตุใน<u>ตารางธาตุ</u>ซึ่งมีสัญลักษณ์เป็น Mn มี โครงสร้างผลึก เป็น Body Centered Cubic ประโยชน์ของแร่แมงกานีส เป็นสินแร่แมงกานีสซึ่งถลุงเอาโลหะแมงกานีสไป ใช้ในอุตสาหกรรมต่างๆ เช่น อุตสาหกรรมเหล็กกล้า โลหะผสม โลหะเชื่อม ใช้ในอุตสาหกรรมเคมี ทำ ถ่านไฟฉาย ทำสี เป็นตัวฟอกในอุตสาหกรรมแก้ว ใช้ทำน้ำยาเคมีและเคมีภัณฑ์ นอกจากนี้ยังใช้ในการทำปุ๋ย และเวชภัณฑ์ต่างๆ

| <u>สัญลักษณ์</u>             | Mn                                   |
|------------------------------|--------------------------------------|
| <u>การจัดเรียงอิเล็กตรอน</u> | [Ar] 3d <sup>5</sup> 4s <sup>2</sup> |
| <u>มวลอะตอม</u>              | 54.938045 amu                        |
| <u>เลขอะตอม</u>              | 25                                   |
| <u>จุดหลอมเหลว</u>           | 1,246 °C                             |
| จุดเดือด                     | 2,097 ℃                              |
| โครงสร้าง                    | BCC                                  |

#### ดารางที่ 2.3 แสดงคุณสมบัติของแมงกานีส

**ที่มา** (ดัดแปลง กัลยารัตน์สระทอง และรุ่งระวี พุดสีเสน 2558)

### 2.1.5 คุณสมบัติของเหล็ก (Iron)

ธาตุเหล็กหรือไอรอน คือ ธาตุในตารางธาตุซึ่งมีสัญลักษณ์ (Fe) เหล็กไม่ปรากฏเป็นพิษต่อ ร่างกาย ยิ่งไปกว่านั้น ยังเป็นธาตุที่ร่างกายเราต้องการในปริมาณเล็กน้อย (Trace Element) เป็นโลหะ จำเป็นสำหรับระบบการย่อยอาหาร เม็ดเลือดแดงของคนและสัตว์ มีเหล็กเป็นองค์ประกอบ ทำหน้าที่นำ ออกซิเจนไปสู่เซลล์ต่าง ๆ ของร่างกาย

### ตารางที่ 2.4 แสดงคุณสมบัติของเหล็ก

| สัญลักษณ์          | Fe         |
|--------------------|------------|
| เลขออกซิเดชันสามัญ | + 2, + 3   |
| น้ำหนักอะตอม       | 55.847 amu |
| <u>เลขอะตอม</u>    | 26         |
| <u>จุดหลอมเหลว</u> | 1536.5 ℃   |
| <u>จุดเดือด</u>    | 3000 °C    |

**ที่มา** (ดัดแปลง กัลยารัตน์สระทอง และรุ่งระวี พุดสีเสน 2558)

#### 2.1.6 สารเฟอร์ไรต์

แม่เหล็กเซรามิกมีองค์ประกอบหลัก คือเหล็ก (Fe) จึงมีชื่อเรียกว่า เฟอร์ไรต์ (Ferrite) ซึ่ง สามารถแบ่งได้เป็น 2 ชนิด คือ ซอฟต์เฟอร์ไรต์ (Soft Ferrite) และฮาร์ดเฟอร์ไรต์ (Hard Ferrite) ซอฟต์ เฟอร์ไรต์สามารถทำให้เกิดสภาพแม่เหล็กได้ง่าย ซึ่งมีเป็นสารประกอบของ MO.Fe<sub>2</sub>O<sub>3</sub> โดย MO อาจเป็น ไอออนของเหล็ก แมงกานีส (Mn) หรือนิกเกิล (Ni) ซึ่งมีประจุบวกสอง สมบัติทางแม่เหล็กที่โดดเด่นของ ซอฟต์เฟอร์ไรต์ นอกเหนือจากการทำให้มีสภาพแม่เหล็กและทำลายสภาวะแม่เหล็กได้ง่ายเหมือนแม่เหล็ก โลหะ ซอฟต์เฟอร์ไรต์ยังมีความต้านทานสูง จึงนิยมใช้เป็นชิ้นส่วนในอุปกรณ์ที่ต้องการความถี่สูง อาทิ หม้อ แปลงไฟฟ้า ไมโครเวฟ เพราะสามารถลดค่าพลังงานสูญเสียที่เกิดขึ้นเนื่องจาก ผลของการเปลี่ยนแปลงทง แม่เหล็กได้ดี ตัวอย่างของซอฟต์เฟอร์ไรต์ ได้แก่ แมงกานีสซิงก์เฟอร์ไรต์ (Mg<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>) นิกเกิลซิงก์เฟอร์ ไรต์ (Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>) ส่วนแม่เหล็กเซรามิกอีกประเภทหนึ่งคือ ฮาร์ดเฟอร์ไรต์นั้นมีองค์ประกอบพื้นฐานคือ MO<sub>0.6</sub>Fe<sub>2</sub>O<sub>3</sub> เมื่อ MO คือไอออนของแบเรียม (Ba) และสตรอนเตียม (Sr) สมบัติเด่นของฮาร์ดเฟอร์ไรต์ ที่ ตรงกันข้ามกับซอฟต์เฟอร์ไรต์ คือ เหนี่ยวนำให้เป็นแม่เหล็กได้ยาก หรือหมดสภาพได้ยากกว่า จึงนิยมใช้เป็น แม่เหล็กถาวรในอุปกรณ์ต่างๆ อาทิเช่น เครื่องกำเนิดไฟฟ้า รีเลย์ มอเตอร์ และเทปแม่เหล็ก ตัวอย่างของ ฮาร์ดเฟอร์ไรต์ ได้แก่ แบเรียมเฟอร์ไรต์ (Ba<sub>0.6</sub>Fe<sub>2</sub>O<sub>3</sub>) และสตรอนเตียมเฟอร์ไรต์ (Sr<sub>0.6</sub>Fe<sub>2</sub>O<sub>3</sub>)

#### 2.1.7 ชนิดของเฟอร์ไรต์

เฟอร์ไรต์แบ่งตามลักษณะของโครงสร้างทางผลึกวิทยา ได้ 3 ชนิด คือ เฟอร์ไรต์สปิเนล (Spinel Ferrite) เฟอร์ไรต์การ์เนต (Garnet Ferrite) เฟอร์ไรต์แมคนิโตพลัมไบท์(Magnetoplumbite Ferrite) เฟอร์ไรต์สปิเนลและเฟอร์ไรต์การ์เนตเป็นเฟอร์ไรต์แม่เหล็กชนิดชั่วคราว (Soft Ferrite) เช่น แมงกานีสซิงค์เฟอร์ไรต์ (MnZnFe<sub>2</sub>O<sub>4</sub>) นิเกิลซิงค์เฟอร์ไรต์ (NiZnFe<sub>2</sub>O<sub>4</sub>) แมกนีเซียมแมงกานีสเฟอร์ไรต์ (MgMnFe<sub>2</sub>O<sub>4</sub>) แมกนีเซียมซิงค์เฟอร์ไรด์ (MgZnFe<sub>2</sub>O<sub>4</sub>) เฟอร์ไรต์แมคนีโตพลัมไบท์ เป็นแม่เหล็กถาวร (Hard Ferrite) เช่น แบเรียมเฟอร์ไรต์ (BaFe<sub>12</sub>O<sub>19</sub>) และสทรอนเซียมเฟอร์ไรด์ (SrFe<sub>12</sub>O<sub>19</sub>)

**1. เฟอร์ไรต์สปิเนล** คือ Me<sup>2+</sup>Fe<sup>3+</sup>O<sub>4</sub> เมื่อ Me<sup>2+</sup> คือ อิออนของโลหะที่มีวาเลนซ์ อิเล็กตรอนเท่ากับ 2 เช่น Fe<sup>2+</sup> Mn<sup>2+</sup> Zn<sup>2+</sup> Ni<sup>2+</sup> Co<sup>2+</sup> Mg<sup>2+</sup> และ Cd<sup>2+</sup> อาจอยู่ในรูปของการผสมระหว่างอิ ออนสองชนิดก็ได้เช่น Mg<sub>1-x</sub>Mn<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> โครงสร้างผลึกของสปิเนลประกอบด้วย O<sup>2-</sup> 32 ช่อง จะมีช่องออก ตะฮีดรอล (octahearal hole) 32 ช่อง และช่องเตตระฮีดรอล 8 ช่อง เนื่องจากโครงสร้างเป็นรูปลูกบาศก์ (cubic ferrite) ช่องแต่ละช่องในหน่วยเซลล์จะก่อให้เกิดโครงผลึกย่อย (sublaltice) แนวแรงแม่เหล็กของ โครงผลึกย่อยทั้งสองชนิดจะอยู่ในแนวขนานกัน แต่ทิศทางตรงกันข้าม และผลลัพธ์ของแรงแม่เหล็กคือ ผลต่างของแนวแรงทั้งสองแนวนี้ ดังรูปที่ 2.4



**รูปที่ 2.4** แผนผังโครงสร้างของสปิเนล **ที่มา :** (J. Mol. Sci, 2013)

**2. เฟอร์ไรต์การ์เนต** มีสูตรทั่วไปทางเคมี คือ M<sub>3</sub><sup>3+</sup> Fe<sub>5</sub><sup>3+</sup> O<sub>12</sub> หรือเขียนได้เป็น M<sub>3</sub><sup>c</sup>Fe<sub>2</sub><sup>a</sup>Fe<sub>3</sub><sup>d</sup>O<sub>12</sub> เมื่อ M เป็นอิออนของโลหะที่มีวาเลนซ์เป็น 3 เช่น Al Ga Cr Mn Rb In และ c a d แทนตำแหน่งโครงสร้างผลึกซึ่งอิออนนั้นครอบครองอยู่ในเนื้อเฟอร์ไรต์ชนิดนี้ อิออน Fe ทำให้เกิดโครงผลึก ย่อย ซึ่ง M<sup>3-</sup>จะถูกล้อมรอบด้วยออกซิเจน 9 อิออนต่อหนึ่งตัว เฟอร์ไรต์ชนิดนี้มีสมบัติเป็นแม่เหล็กอย่างอ่อน เมื่อถูกเหนี่ยวนำแสดงได้ ดังรูปที่ 2.5



**รูปที่ 2.5** แสดงรูปโครงสร้างผลึกของเฟอร์ไรต์การ์เนต **ที่มา** (Trivedi Research Group Complex Oxides, 2558)

# 3. เฟอร์ไรต์แมคนิโตพลัมไบท์ มีสูตรทั่วไปทางเคมีโดยประมาณเป็น

PbFe<sub>7.5</sub>Mn<sub>3.5</sub>Al<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>19</sub> มีโครงสร้างผลึกเป็น<sup>"</sup>แบบเฮกซะโกนอล (Hexagonal) นอกจากนั้นยังมี คุณสมบัติเป็นแม่เหล็กถาวร ในหนึ่งหน่วยเซลจะถูกสร้างขึ้นจากสูตร AB<sub>12</sub>O<sub>19</sub> หรือ A<sup>2-</sup>O<sub>0.6</sub>B<sub>2</sub><sup>3+</sup>O<sub>3</sub> โดยที่ A และ B คือ Al Ga Cr และ Fe ตัวอย่างที่รู้จักกันดีคือ แมกนิโตพลัมไบท์ มีสูตรทั่วไปทางเคมีเป็น PbFe<sub>12</sub>O<sub>19</sub> แสดงได้ ดังรูปที่ 2.6



**รูปที่ 2.6** แสดงโครงสร้างผลึกแบบเฮกซะโกนอล (Hexagonal) **ที่มา** (Tikalon Blog by Dev Gualtieri, 2015)

# 2.1.8 คุณสมบัติของเฟอร์ไรต์

1. สมบัติทางเคมีของเฟอร์ไรต์ คือ เฟอร์ไรต์ไม่ละลายน้ำแต่เป็นตัวทำละลายสารอินทรีย์

ต่างๆ

 สมบัติทางกายภาพของเฟอร์ไรต์ คือ มีสถานะเป็นของแข็งมีโครงสร้างเป็นตาข่าย ติดต่อกันไปตลอดอัน แต่เมื่อถูกเผาที่อุณหภูมิสูงจะมีความแข็งแรงและทนต่อแรงกระแทก นอกจากนั้นเมื่อ ถูกเหนี่ยวนำจะทำให้มีอำนาจแม่เหล็กได้ ส่วนผสมของเฟอร์ไรต์ที่เหมาะสมและการเตรียมที่ดีจะต้องทำให้ ได้เนื้อเฟอร์ไรต์ที่มีความซาบซึมทางแม่เหล็กสูง และเฟอร์ไรต์ชนิดแม่เหล็กชั่วคราวจะต้องมีการสูญเสีย พลังงานในการกลับขั้วแม่เหล็กน้อย

# 2.1.9 วิธีการเตรียม

 กระบวนการตกตะกอนร่วม (Co-precipitation Method) เป็นเทคนิคการตกตะกอน ร่วมอาศัยวิธีการเปลี่ยนแปลงอุณหภูมิหรือความดันของสารละลายเพื่อให้มีการตกตะกอนเกิดขึ้น ซึ่ง กระบวนการหลักที่เกิดขึ้นในกระบวนการตกตะกอนประกอบด้วยการเกิดนิวเคลียส (Nucleation) และการ เติบโต (Growth) โดยทั่วไปแล้ว ถ้าระบบมีอัตราการเกิดนิวเคลียสที่สูง แต่มีอัตราการเติบโตที่ช้า อนุภาคของ ตะกอนที่ได้จะมีขนาดเล็ก ซึ่งตัวแปรสำคัญที่มีผลต่อความบริสุทธิ์และลักษณะทางกายภาพของตะกอนที่เตรียมได้ คือ ความเข้มข้นของสารตั้งต้น ความเป็นกรด-ด่าง และอัตราการผสมของสารละลายการทำให้เกิดสารละลาย อิ่มตัวยิ่งยวด นอกจากนี้ยังสามารถทำให้สารละลายเกิดการอิ่มตัวยิ่งยวด และเกิดการตกตะกอนได้โดยใช้ความดัน ที่เหมาะสม หรือใช้วิธีการเติมสารเคมีเหมาะสมลงไป เรียกสารเคมีที่เติมลงไปเพื่อทำให้เกิดการตกตะกอนนี้ว่า ตัว ตกตะกอน (Precipitation agent) เมื่อเติมสารเคมีลงไปจะทำให้เกิดตะกอนขององค์ประกอบที่สามารถละลายน้ำ ได้น้อย ทำให้สารละลายเกิดการอิ่มตัวยิ่งยวดสูงส่งผลทำให้ระบบมีอัตราการเกิดนิวเคลียสสูงขึ้น การควบคุมการ ตกตะกอนทำได้โดยการควบคุมอัตราการผสมกัน ความเข้มข้นของสารละลาย อุณหภูมิของสารละลาย ค่าความ เป็นกรด-ด่าง (ค่า pH) รวมทั้งการคนสารละลาย ถ้าความเข้มข้นของสารละลายมากเกินไปจะทำให้อนุภาคมีขนาด ใหญ่ และหากทำการผสมกันในเครื่องอัตราโซนิก จะทำให้ขนาดอนุภาคที่เกิดขึ้นมีขนาดเล็กสม่ำเสมอ นอกจากนี้ ยังต้องมีการตั้งสารละลายทิ้งไว้ให้เกิดตะกอนอย่างสมบูรณ์ ซึ่งใช้เวลาไม่เท่ากันทั้งนี้ขึ้นอยู่กับชนิดของปฏิกิริยา กระบวนการตกตะกอนแสดง ดังรูปที่ 2.7



**รูปที่ 2.7** กระบวนการที่เกิดขึ้นในการตกตะกอน **ที่มา** (ดัดแปลง นุชรีย์ ชมเชย, 2553)

กระบวนการตกตะกอนเป็นเทคนิคที่ถูกนำมาใช้ในการสงเคราะห์กันอย่างแพร่หลายในปัจจุบัน เนื่องจากสารที่ได้มีความบริสุทธิ์สูง สามารถควบคุมสัณฐานวิทยา และการแจกแจงของอนุภาค (Particle size distribution) ได้เป็นอย่างดี แต่อย่างไรก็ตามกระบวนตกตะกอนมีข้อเสีย คือ ต้องมีการแยก ตะกอนออกจากสารสะลาย การทำให้แห้งและการให้ความร้อนแก่ตะกอน เพื่อทำให้เกิดเป็นผงที่ต้องการ ซึ่ง วิธีการทำให้แห้ง และ การแคลไซน์ มักทำให้ตะกอนและผงเกิดการเกาะกันเป็นกลุ่มก้อน (Agglomerate) (นุชรีย์ ชมเชย, 2553)

 กระบวนการให้ความร้อน เป็นกระบวนการที่มาบทบาทสำคัญอย่างมากต่อการผลิต เซรามิก เนื่องจากเซรามิกส่วนใหญ่นั้นได้มาจากการเผาด้วยอุณหภูมิที่สูงในระดับหนึ่งเพื่อให้มีโครงสร้าง จุลภาคและสมบัติตรงตามที่ต้องการ นอกจากนั้นยังเป็นกระบวนการไล่สารอินทรีย์และก๊าซต่างๆที่อยู่ใน ชิ้นงาน นอกจากนั้นกระบวนการให้ความยังทำให้วัสดุเกิดพันธะซึ่งกันและกันโดยการแพร่ของของแข็งที่ อุณหภูมิสูง จะทำให้ส่วนที่เป็นรูพรุนของเนื้อวัสดุลดลงและมีความหนาแน่นมากขึ้น ตัวอย่างของ กระบวนการให้ความร้อน เช่น การแคลไซน์ การเผาซินเตอร์ และการเผาซินเตอร์แบบสองขั้นตอน

2.1 การแคลไซน์ (Calcination) เป็นกระบวนการให้ความร้อนแก่สารตั้งต้นที่มีสถานะเป็น ของแข็งการเผาเพื่อไล่น้ำ สารอินทรีย์และก๊าซต่างๆที่อยู่ในเนื้อชิ้นงาน และเพื่อทำให้เกิดการสลายตัว หรือ เกิดการทำปฏิกิริยากันระหว่างสารตั้งต้นต่างชนิดกัน แล้วเกิดเป็นของแข็งชนิดใหม่ขึ้น และตัวอย่างช่วงเวลา ในการเผาแคลไซน์แสดงได้ ดังรูปที่ 2.8 แสดงช่วงเวลาในการเผาแคลไซน์ กำหนดอุณหภูมิในการเผา (T) เท่ากับ 1,100 เผาแซ่เป็นเวลา 2 ชั่วโมง



รูปที่ 2.8 แสดงช่วงเวลาในการเผาแคลไซน์

2.2 การเผาซินเตอร์ (Sintering) เป็นกระบวนการที่ทำให้อนุภาคของวัสดุเซรามิกเกิดพันธะซึ่ง กันและกัน โดยการแพร่ของของแข็งที่อุณหภูมิสูง ซึ่งจะทำให้ส่วนที่เป็นรูพรุนของเนื้อวัสดุลดลง และมีความ หนาแน่นมากขึ้น ในขบวนการซินเตอร์อนุภาคจะเกาะเข้าหากันโดยการแพร่ภายใต้สถานะของแข็งที่อุณหภูมิสูงมากแต่ต่ำกว่าจุดหลอมเหลวของสารประกอบที่ถูกเผานั้น แสดงตัวอย่างเช่น ฉนวนของหัวเทียน ที่ทำจาก Al<sub>2</sub>O<sub>3</sub> จะถูกเผาที่อุณหภูมิ 1,600 องศาเซลเซียส (จุดหลอมเหลวของ Al<sub>2</sub>O<sub>3</sub> อยู่ที่ประมาณ 2,050 องศาเซลเซียส) ในกระบวนการซินเตอร์การแพร่ของอะตอมเกิดที่ขึ้นระหว่างหน้าผิวสัมผัสของ อนุภาคทำให้เกิดพันธะทางเคมีซึ่งกันและกัน ถ้ากระบวนการดำเนินต่อไป จะเกิดอนุภาคที่ใหญ่ขึ้นเนื่องจาก เกิดการรวมตัวกันของอนุภาคขนาดเล็กๆ เข้าด้วยกันมากขึ้น เมื่อเวลาที่ใช้ในการซินเตอร์เพิ่มขึ้นอนุภาคจะมี ขนาดใหญ่ขึ้นแต่รูพรุน (Porosition) ของวัสดุจะลดลง ที่จุดสิ้นสุดของกระบวนการขนาดของเกรน จะเข้าสู่ สภาวะสมดุล สิ่งที่ขับเคลื่อนให้กระบวนการดำเนินไป คือ การลดพลังงานของระบบให้ต่ำลง โดยปกติการ ซินเตอร์จะไม่เกิดขึ้นจนกว่าอุณหภูมิในผลิตภัณฑ์จะสูงเกินครี่งหนึ่งหรือสองในสามของอุณหภูมิการ หลอมเหลวของจิ้นงาน ซึ่งเป็นผลิตภัณฑ์จะสูงเกินครี่งหนึ่งหรือสองในสามของอุณหภูมิการ ขนาดใหญ่ขึ้นเตอร์จะไม่เกิดขึ้นจนกว่าอุณหภูมิในผลิตภัณฑ์จะสูงเกินครี่งหนึ่งหรือสองในสามของอุณหภูมิการ หลอมเหลวของจิ้นงาน ซึ่งเป็นข่วงที่อุณหภูมิสูงพอต่อการทำให้อิ้นงานเกิดการซินเตอร์แบบสถานะของแข็ง

ที่แต่ละอะตอมสามารถเกิดมีการแพร่กระจายได้อย่างมีนัยสำคัญ การกำจัดสารอินทรีย์ด้วยความร้อน (Organic Burnout) หรือเทอร์โมไลซีส (Themolysis) เป็นการกำจัดพวกสารอินทรีย์ที่ตกค้างอยู่ภายใน ชิ้นงานหลังจากการอบแห้งซึ่งถือว่าเป็นขั้นตอนที่สำคัญมาก การซินเตอร์แบบสถานะของแข็งเป็น กระบวนการทางความร้อนที่ทำให้อนุภาคเกิดการสร้างพันธะกันอย่างสมดุล การเกิดพันธะเชื่อมต่อกัน ดังกล่าวทำให้ระบบมีความแข็งแรงสูงขึ้นและมีพลังงานลดลง ซึ่งกล่าวได้ว่าการซินเตอร์นั้นเป็นการกำจัดรู พรุนที่อยู่ระหว่างอนุภาคผง โดยอาศัยการหดตัวขององค์ประกอบที่เชื่อมอยู่ติดกันแล้วเกิดการเติบโตไปด้วย โดยมีการสร้างพันธะที่แข็งแรงระหว่างอนุภาคที่อยู่ติดกันขึ้นมา ทุกขั้นตอนเหล่านี้อยู่ในระหว่างการ เปลี่ยนแปลงชิ้นงานที่ผ่านการอัดขึ้นโครงรูปไปเป็นโครงสร้างจุลภาคที่ประกอบไปด้วย การยึดเกาะกัน ของ แกรนต่างๆ ล้วนแต่เป็นส่วนหนึ่งของ การซินเตอร์ ทั้งสิ้น รูปที่ 2.9 (ก) เป็นช่วงเวลาก่อนที่เผาซินเตอร์ 2.9 (ข) เป็นช่วงเวลาการเผาซินเตอร์ และ รูปที่ 2.9 (ค) เป็นช่วงเวลาหลังจากการซินเตอร์





**รูปที่ 2.9** แสดงขั้นตอนของการเชื่อมตัวของอนุภาคในกระบวนการเผาซินเตอร์ (ก) ก่อนการเผาซินเตอร์ (ข) ระหว่างการเผาซินเตอร์

(ค) หลังการเผาซินเตอร์

```
ที่มา (เอกสิทธิ์ สุทธะพินทุ, 2552)
```

2.3 การเผาซินเตอร์แบบสองชั้นตอน (Two Step Sintering) กระบวนการสุดท้ายใน กระบวนการผลิตชิ้นงานเซรามิก เป็นกระบวนการอุณหภูมิสูงที่อาศัยการให้ความร้อนแก่อนุภาคผงผลึก นอกจากนั้นยังทำให้อนุภาคจะเกาะเข้าหากันของวัสดุเซรามิกเกิดพันธะซึ่งกันและกันอย่างสมดุล วัสดุเซรา มิกที่มีความหนาแน่นสูง และได้เซรามิกที่มีความบริสุทธิ์สูงไม่มีสารอินทรีย์ปนเปื้อนในตัวอย่าง เมื่อเผาชิน เตอร์อนุภาคที่อยู่ใกล้กันกับอนุภาคเกิดการสร้างพันธะระหว่างอนุภาคที่แข็งแรง กระบวนการเผาซินเตอร์ อาจจะกล่าวได้ว่าการเผาซินเตอร์หมายถึงการกำจัดรูพรุนที่อยู่ระหว่างอนุภาค โดยอาศัยการหดตัวของ องค์ประกอบที่เชื่อมอยู่ติดกันแล้วเกิดการเติบโตไปด้วนกันกระบวนการเผาซินเตอร์แบบสองขั้นตอน แสดง ได้ดังรูปที่ 2.10 เป็นตัวอย่างแสดงการเผาซินเตอร์แบบสองขั้นตอน ที่ T<sub>1</sub> เท่ากับ 1,250 องศาเซลเซียส เผา แช่เป็นเวลา 1 นาที T<sub>2</sub> เท่ากับ 1,200 องศาเซลเซียส เผาแช่เป็นเวลา 5 ชั่วโมง



รูปที่ 2.10 แสดงขั้นตอนการเผาซินเตอร์แบบสองขั้นตอน

### 2.1.10 การวิเคราะห์โครงสร้างระดับจุลภาค

1. การศึกษาโครงสร้างระดับจุลภาค ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด ้ (Scanning Electron Microscope : SEM) กระบวนการที่ใช้อิเล็กตรอนเป็นแหล่งกำเนิดแสง เป็นเครื่องมือ ้ที่ใช้ศึกษาลักษณะสัณฐานของวัสดุในระดับจุลภาค ซึ่งเป็นรายละเอียดที่เล็กมาก และเนื่องจากข้อจำกัดของ กล้องจุลทรรศน์แบบแสงที่มีความยาวคลื่นแสงขนาดใหญ่กว่าลักษณะสัณฐานบางชนิดที่ต้องการศึกษา ้กำลังความสามารถในการแยกชัดของกล้องจุลทรรศน์แบบแสงธรรมดามีค่าต่ำ ใช้ดูวัตถุเล็กสุดประมาณ 0.2 ไมโครเมตร และให้กำลังขยายสูงสุดไม่เกิน 3,000 เท่า ซึ่งไม่สามารถตรวจสอบรายละเอียดของวัตถุที่มี ้ขนาดเล็กมากๆได้ จึงมีความจำเป็นอย่างยิ่งที่จะต้องใช้กล้องจุลทรรศน์อิเล็กตรอนที่มีกำลังขยายสูง มี ้ความสามารถในการแยกชัดดี เนื่องจากมีความยาวคลื่นสั้น เพื่อช่วยในการวิเคราะห์ลักษณะสัณฐานของ ้วัสดุ โดยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดมีกำลังขยายมากกว่า 3,000 เท่า จนถึงระดับมากกว่า 100,000 เท่า และยังสามารถแจกแจงรายละเอียดของภาพ ซึ่งขึ้นกับลักษณะตัวอย่างได้ตั้งแต่ 3 ถึง 100 นาโนเมตร หลักการทำงานของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด จะประกอบด้วยแหล่งกำเนิด ้อิเล็กตรอนซึ่งทำหน้าที่ผลิตอิเล็กตรอนเพื่อป้อนให้กับระบบ โดยกลุ่มอิเล็กตรอนที่ได้จากแหล่งกำเนิดจะถูก เร่งด้วยสนามไฟฟ้า จากนั้นกลุ่มอิเล็กตรอนจะผ่านเลนส์รวบรวมรังสี (Condenser Lens) เพื่อทำให้กลุ่ม อิเล็กตรอนกลายเป็นลำอิเล็กตรอน ซึ่งสามารถปรับให้ขนาดของลำอิเล็กตรอนใหญ่หรือเล็กได้ตามต้องการ หากต้องการภาพที่มีความคมชัดจะปรับให้ลำอิเล็กตรอนมีขนาดเล็ก หลังจากนั้นลำอิเล็กตรอนจะถูกปรับ ระยะโฟกัสโดยเลนส์ใกล้วัตถุ (Objective Lens) ลงไปบนผิวชิ้นงานที่ต้องการจะศึกษา และหลังจากนั้นลำ ้อิเล็กตรอนถูกกราดลงบนชิ้นงานจะทำให้เกิดอิเล็กตรอนทุติยภูมิ (Secondary Electron) ซึ่งสัญญาณจาก ้อิเล็กตรอนทุติยภูมินี้จะถูกบันทึก และแปลงไปเป็นสัญญาณทางอิเล็กทรอนิกส์ ถูกนำไปสร้างเป็นภาพบน ้จอโทรทัศน์ต่อไปและสามารถบันทึกภาพจากหน้าจอโทรทัศน์ได้เลย ดังรูปที่ 2.11



ร**ูปที่ 2.11** แสดงหลักการทำงานของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด **ที่มา** (http://www.il.mahidol.ac.th/e-media/nano/Page/Unit4-5.html)

2. การศึกษารูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ ด้วยเครื่องเอ็กซเรย์ดิฟแฟรกโตมิเตอร์ (X-ray Diffraction ; XRD) เป็นเทคนิคหนึ่งที่ใช้ในการศึกษาวิเคราะห์โครงสร้างผลึกที่ไม่ทำลายตัวอย่าง ที่นิยม ใช้อย่างแพร่หลายในงานด้านเคมีและเคมีชีวภาพ โดยใช้ในการตรวจวัดโครงสร้างของโมเลกุลต่างๆ ไม่ว่าจะ เป็นสารประกอบ อนินทรีย์ โปรตีนและดีเอ็นเอ ที่มีอยู่ตามธรรมชาติ รวมถึงวัสดุที่สังเคราะห์ขึ้น ผู้ผลิตได้ พัฒนาเครื่องมือและอุปกรณ์ที่ใช้ในเทคนิคนี้ให้มีความสามารถมากยิ่งขึ้นและใช้งานได้ง่ายขึ้น ทำให้เอื้อ ประโยชน์สำหรับนักวิทยาศาสตร์ที่จะนำไปใช้ปรับปรุง พัฒนา หรือยกระดับการวิเคราะห์ วิจัย หรือ ตรวจสอบในระดับสูงขึ้นไป



**รูปที่ 2.12** แสดงเครื่องวิเคราะห์การเลี้ยวเบนรังสีเอ็กซ์ หรือ X-ray Diffraction (XRD) **ที่มา** (http://www.uq.edu.au/nanoworld/index.html?page=160084)

เทคนิคการเลี้ยวเบนโดยรังสีเอ็กซ์จะเลี้ยวเบนไปตามช่องว่างระหว่างอะตอมภายในผลึกและจะถูกบันทึกค่า แล้วทำการวิเคราะห์โครงสร้างผลึกนั้นๆ โดยระยะห่างระหว่างอะตอมนั้นสามารถคำนวณได้จากสมการของ Bragg 's Law



**รูปที่ 2.13** แสดงการเลี้ยวเบนของรังสีเอ็กซ์จากระนาบในอนุภาคผลึก **ที่มา** (จรัส บุณยธรรมา, 2555)

จากรูปที่ 2.13 สามารถอธิบายความสัมพันธ์ได้จากสมการของ Bragg 's Law คือ

 $2d\sin\theta = n\lambda \quad ..... (2.5)$ 

โดยที่

- n คือ เลขจำนวนเต็ม 1, 2, 3,....,
  - $\lambda$  คือ ค่าความยาวคลื่นของรังสีเอ็กซ์ (อังสตรอม)
  - *d* คือ ระยะห่างระหว่างระนาบของผลึก (อังสตรอม)
  - heta คือ มุมตกกระทบของรังสีเอ็กซ์กับระนาบผลึก

**ตัวอย่าง** เป็นรูปแบบการเลี้ยวเบนของอนุภาคเหล็กออกไซด์ที่สังเคราะห์จากทั้ง 4 วิธี คือ วิธีการตกตะกอน ร่วม (วิธี A ,B ) วิธีโซล-เจลดัดแปลง (วิธี C) วิธีการออกซิเดทีฟแอลคาไลน์ไฮโดรไลซิสของผงเหล็กบริสุทธิ์ (วิธี D) ดังรูปที่ 2.14



**รูปที่ 2.14** รูปแบบการเลี้ยวเบนรังสีเอ็กซ์ของอนุภาคเหล็กออกไซด์สังเคราะห์โดย (a) วิธี A, (b) วิธี B, (c) วิธี C และวิธี D ที่อุณหภูมิตกตะกอน (d) 25°C, (e) 50°C, (f) 70°C และ 90°C (g) **ที่มา** (นุชรีย์ ชมเชย, 2553)

# 2.2 งานวิจัยที่เกี่ยวข้อง

Y.Y. Meng et.al, (2012) ผงนาโนของ MnZn ที่มีโครงสร้างสปิเนลเฟอร์ไรท์ที่ถูก เตรียมโดยวิธีตกตะกอนร่วมและวิธีการใช้กรด  $\overline{\mathbf{0}}$ -FeOOH เป็นสารตั้งต้น เช่น การประมวลผลของ พารามิเตอร์ ค่า pH ของการตกตะกอนร่วมและ reflux time ในการก่อตัวของผลึกในโครงสร้างจุลภาคและ สมบัติแม่เหล็กที่ตรวจสอบอย่างเป็นระบบ ผลการศึกษาพบว่า แทนที่จะเป็นรูปทรงกลมแต่อนุภาคนาโน Mn<sub>0.5</sub>Zn<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> มีรูปทรงสี่เหลี่ยมที่มีขนาดแตกต่างตั้งแต่ 10 ถึง 20 นาโนเมตร ขนาดสามารถควบคุมได้ โดยวิธีตกตะกอนร่วมและ reflux parameters ผลิตภัณฑ์มีสภาพแม่เหล็กอิ่มตัว (M<sub>s</sub>) 46 emu/g เมื่อค่า pH ของการตกตะกอนร่วมและ reflux time เป็นเวลา 13 และ 6 ชั่วโมง ตามลำดับ ผลกระทบของธาตุแรร์ เอิร์ท (RE) (La, Nd, Gd) ที่โดปใน โครงสร้างและสมบัติแม่เหล็กของ Mn<sub>0.4</sub>Zn<sub>0.6</sub>Fe\$<sub>2-x</sub>RE<sub>x</sub>O<sub>4</sub> ที่ตรวจสอบ อนุภาคนาโน เนื่องจากความแตกต่างในช่วงเวลาที่มีโมเมนต์แม่เหล็กและรัศมีไอออนสำหรับ La<sup>3+</sup>, Nd<sup>3+</sup> และ Gd<sup>3+</sup> สมบัติแม่เหล็กต่างๆ ใน 3 ชุดนี้ของโลหะผสม นอกจากนี้ยังพบว่า ขนาดอนุภาคสภาพแม่เหล็ก อิ่มตัวและแรงบีบบังคับ (H<sub>c</sub>) ขึ้นอยู่กับความเข้มข้นของธาตุแรร์เอิร์ท เนื่องจากความเข้มข้นที่ต้อง การครอบตำแหน่งของไอออนธาตุแรร์เอิร์ท

Sahira et.al, (2015) การเคลือบโพลีเอทีลีนไกคอล (Polyethylene Glycol; PEG) บนอนุภาค นาโนซิงค์เฟอร์ไรท์แทนอนุภาคนาโนแมงกานีสเฟอร์ไรต์ มีรายงานในการศึกษาในปัจจุบัน สารเคมี Bearing นาโนเฟอร์ไรต์เฟสเดียว สำหรับ Mn<sub>(1-X)</sub>Zn<sub>(X)</sub>Fe<sub>2</sub>O<sub>4</sub> (0.0 < X < 1.0) ภายใต้อุณหภูมิต่ำที่ 75 °C และ ลักษณะทางสัณฐานวิทยา โครงสร้างและสมบัติแม่เหล็ก ลักษณะการเตรียมเฟอร์ไรท์ใช้ x-ray diffraction (XRD), Field emission scan electron microscopy (FE-SEM), และ Vibrating Sample Magnetometer (VSM) Techniques XRD แสดงให้เห็นการก่อตัวของโครงสร้างสปิเนลเฟสเดียว สำหรับ ตัวอย่างที่มี Zinc-Content หาขนาดผลึกโดยใช้สมการเซอร์เรอร์ สำหรับ ในช่วง 4.50-15.89 นาโนเมตร แถบลักษณะเฉพาะของ PEG เป็นข้อสังเกตในเทคนิคการแปลงของฟูริเยร์ของคลื่นอินฟราเรดในชั้น PEG บน Mn-Zn อนุภาคนาโนเฟอร์ไรต์ยืนยันรูปแบบทรงกลมของการเคลือบ PEG ในอนุภาคนาโน  $Mn_{(1-x)}Zn_{(x)}Fe_2O_4$  และรีดิวซ์ การรวมมวลในอนุภาคนาโน  $Mn_{(1-x)}Zn_{(x)}Fe_2O_4$  และรีดิวซ์ การรวมมวลในอนุภาคนาโน  $Mn_{(1-x)}Zn_{(x)}Fe_2O_4$  และรีดิวซ์ การรวมมวลในอนุภาคนาโน  $Mn_{(1-x)}Zn_{(x)}Fe_2O_4$  แสดงให้เห็นโดย FE-SEM การวัด สมบัติแม่เหล็กที่อุณหภูมิห้องโดย VSM แสดงให้เห็นว่า Samples เป็น Superparamagnetic ที่สภาพ แม่เหล็กอิ่มตัวและสภาพแม่เหล็กหักล้าง ในช่วง 1.86-20.66 emu/ g และ 12.922-30.253 Oe ตามลำดับ M-H loop ของ Samples ทั้งหมดจะแคบที่ค่าสภาพแม่เหล็กหักล้างต่ำและสภาพคงอยู่ แสดงให้เห็นว่า ธรรมชาติของ Superparamagnetic ของ Samples นี้

J. Amighian<sup>a</sup> et.al, (2013) งานวิจัยนี้แทนอนุภาคนาโนแม่เหล็ก x เท่ากับ 0-0.75 ( $Mn_{3-x}O_4$ , X=0-0.75) โดยวิธีตกตะกอนร่วม การวิเคราะห์การเลี้ยวเบนรังสีเอกซ์ แสดงให้เห็นว่า อนุภาคนาโนที่ เตรียม มีโครงสร้างสปิเนลเฟสเดียว และขนาดผลึกเฉลี่ยประมาณ 20 นาโนเมตร พบว่าตัวอย่างมี ขนาด อนุภาคเฉลี่ยประมาณ 25 นาโนเมตร อุณหภูมิคูรี ( $T_c$ ) ของ Samples วัดโดยความสมดุลของฟาราเดย์ และ ลดลงจาก 610 องศาเซลเซียส ถึง 510 องศาเซลเซียส โดยเพิ่มปริมาณแมงกานีสจาก x เท่ากับ 0 ถึง x เท่ากับ 0.75 M-H Curves ของอนุภาคนาโนแสดงพฤติกรรมที่เป็น Superparamagnetic สำหรับ Sample ทั้งหมด ยกเว้น x=0 และสภาพอิ่มตัวเพิ่มขึ้น เมื่อ Mn ลดลง อุณหภูมิขึ้นอยู่กับสภาพรับไว้ได้ของ ไฟฟ้ากระแสสลับ ตัวอย่างที่แสดงให้เห็นว่าความถี่ที่แตกต่างกัน แสดงให้เห็นว่า ความถี่ขึ้นอยู่กับช่วงอุณหภูมิ สำหรับสภาพแม่เหล็ก Superparamagnetic ที่ดีสามารถ อธิบายได้โดยวิธี Vogel-Fulcher law

Jianxiang Ding et.al, (2014) การเพิ่มคุณสมบัติการเก็บรักษาพลังงานของเซรามิก 0.89Bi<sub>(0.5)</sub>Na<sub>(0.5)</sub>TiO<sub>3</sub>-0.06BaTiO<sub>3</sub>-0.05K<sub>0.5</sub> Na<sub>(0.5)</sub>NbO<sub>3</sub> ที่ปราศจากสารตะกั่ว และ Anti-Ferroelectric เตรียมโดยวิธีการเผาสองขั้นตอน ได้เซรามิก 0.89BNT-0.06BT-0.05KNN ที่ปราศจากสารตะกั่ว และ Anti-Ferroelectric มีความหนาแน่นของการจัดเก็บพลังงานที่มากขึ้น เนื่องจากกระบวนการเผา 2 ขั้นตอน กราฟ P-E จะแสดงให้เห็นถึงคุณสมบัติทางไฟฟ้าที่ดีที่สุดเมื่อ E<sub>c</sub> เท่ากับ 8.2 kv/cm P<sub>r</sub> เท่ากับ 5.4 µc/cm<sup>2</sup> P<sub>max</sub> เท่ากับ 32.6 µc/cm<sup>2</sup> และมี W ถึง 0.9 J/cm<sup>2</sup> ซึ่งมีค่าเป็น3 เท่าของการเผาขั้นตอนเดียว จะมีคุณสมบัติ AFE ที่ดีกว่า และความหนาแน่นของพลังงานที่สูงขึ้น อาจเกิดจากการเผา 2 ขั้นตอนที่จะได้ ขนาดของเกรนที่มีขนาดเล็ก และมีอนุภาคสม่ำเสมอมากขึ้นกว่าเซรามิกที่เผาขั้นตอนเดียว งานนี้มีวิธีการเผา ที่เรียบง่ายและประหยัดค่าใช้จ่ายในการเตรียมความพร้อมของวัสดุเซรามิก สำหรับเก็บประจุที่มีคุณสมบัติ การเก็บรักษาพลังงานสูง

**กัลยารัตน์ สระทอง และรุ่งระวี พุดสีเสน (2558)** งานวิจัยนี้เป็นการศึกษาสมบัติทางแม่เหล็ก ของเซรามิกแมกนีเซียมแมงกานีสเฟอร์ไรต์ (M<sub>g(1-x)</sub>Mn<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>) ที่เตรียมด้วยวิธีปฏิกิริยาสถานะของแข็ง (Solid state reaction) ในอัตราส่วนที่แตกต่างกัน โดยอัตราส่วน x เท่ากับ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 และ 1.0 อุณหภูมิในการเผาแคลไซน์ 1,100 องศาเซลเซียส อุณหภูมิที่ใช้ในการเผาซินเตอร์ 1350 องศาเซลเซียส แล้วนำไปศึกษาโครงสร้าง MgFe<sub>2</sub>O<sub>4</sub> และ MnO ด้วยเทคนิคการเลี้ยวเบนรังสีเอ็กซ์ และเทียบกับไฟล์มาตรฐานหมายเลข JCPDF88-1939, JCPDF78-0390 ศึกษาลักษณะโครงสร้างระดับ จุลภาคโดยใช้เทคนิคกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด ศึกษาร้อยละการหดตัว ศึกษาความ หนาแน่นโดยใช้เทคนิคอคิมิดิส จากนั้นศึกษาสมบัติทางแม่เหล็กด้วยเครื่อง Vibrating sample magnetometer จากการศึกษา พบว่า โครงสร้างของเกรนมีลักษณะเป็นเหลี่ยม ขนาดของเกรนเฉลี่ย ประมาณ 10.47 ไมโครเมตร ที่อัตราส่วนของ x เท่ากับ 0.5 ทำให้ร้อยละการหดตัวสูงสุดที่ 15.58 ความ หนาแน่นสูงสุดที่ 3.99 กรัมต่อลูกบาศก์เซนติเมตรและคุณสมบัติทางแม่เหล็กพบว่าสนามแม่เหล็กที่ได้เป็น สนามแม่เหล็กแบบเฟอร์โรชนิดอ่อน มีอำนาจในการหักล้างได้ง่ายและสัดส่วนที่ x เท่ากับ 0.6 และ x เท่ากับ 0.7 เป็นสัดส่วนที่ดีที่สุด